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Basic crawler operation

» Begin with known “seed” URLs

» Fetch and parse them
Extract URLs they point to

Place the extracted URLs on a queue

» Fetch each URL on the queue and repeat
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What any crawler must do

» Be Polite: Respect implicit and explicit politeness
considerations
Only crawl allowed pages
Respect robots.txt (more on this shortly)

» Be Robust: Be immune to spider traps and other
malicious behavior from web servers




What any crawler should do

» Be capable of distributed operation: designed to run on
multiple distributed machines

» Be scalable: designed to increase the crawl rate by adding
more machines

» Performance/efficiency: permit full use of available
processing and network resources



What any crawler should do (Cont’d)
» Fetch pages of “higher quality” first

» Continuous operation: Continue fetching fresh copies of a
previously fetched page

» Extensible: Adapt to new data formats, protocols




Explicit and implicit politeness

» Explicit politeness: specifications from webmasters on
what portions of site can be crawled

robots.txt

» Implicit politeness: even with no specification, avoid hitting
any site too often




Robots.txt

» Protocol for giving spiders (“robots”) limited access
to a website, originally from 1994

» Website announces its request on what can(not) be
crawled
For a server, create a file /robots.txt

This file specifies access restrictions


http://www.robotstxt.org/wc/norobots.html

Robots.txt example

» No robot should visit any URL starting with
"lyoursite/temp/", except the robot called “searchengine”:

User—-agent: *
Disallow: /yoursite/temp/

User—agent: searchengiline

Disallow:



Robots.txt example: nih.gov

User-agent: PicoSearch/1.0

Disallow:
Disallow:

Disallow:
Disallow:

/news/information/knight/
/nidcd/

/news/research matters/secure/
/od/ocpl/wag/

User—-agent: *

Disallow:
Disallow:

Disallow:
Disallow:
Disallow:
Disallow:

/news/information/knight/
/nidcd/

/news/research_matters/secure/
/od/ocpl/wag/

/ddir/

/sdminutes/
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URL frontier

» The URL frontier is the data structure that holds and manages
URLs we'’ve seen, but that have not been crawled yet.

» Can include multiple pages from the same host
Must avoid trying to fetch them all at the same time

» Must keep all crawling threads busy

URL frontier:
found, but
not yet crawled

URLs crawled

and parsed




Processing steps in crawling

» Pick a URL from the frontier
» Fetch the doc at the URL <= Which one!

» Parse the URL
Extract links from it to other docs (URLs)

» Check if URL has content already seen

If not, add to indexes

» For each extracted URL
Ensure it passes certain URL filter tests
Check if it is already in the frontier (duplicate URL elimination)

13
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DNS (Domain Name Server)

» A lookup service on the internet
Given a URL, retrieve IP address of its host

Service provided by a distributed set of servers — thus, lookup
latencies can be high (even seconds)

» Common OS implementations of DNS lookup are
blocking: only one outstanding request at a time

» Solutions
DNS caching

Batch DNS resolver — collects requests and sends them out
together
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Parsing: URL normalization

» When a fetched document is parsed, some of the
extracted links are relative URLs

E.g., has a relative link to
Iwiki/Wikipedia:General_disclaimer which is the same as the
absolute URL

» During parsing, must normalize (expand) such relative
URLs
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http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer
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Content seen?

» Duplication is widespread on the web

» If the page just fetched is already in the index, do not
further process it

» This is verified using document fingerprints or shingles
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Filters and robots.txt

» Filters — regular expressions for URLs to be crawled or
not

E.g., only crawl .edu
Filter URLs that we can not access according to robots.txt

» Once a robots.txt file is fetched from a site, need not fetch
it repeatedly
Doing so burns bandwidth, hits web server

Cache robots.txt files
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Duplicate URL elimination

» For a non-continuous (one-shot) crawl, test to see if the
filtered URL has already been passed to the frontier

» For a continuous crawl — see details of frontier
implementation
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Simple crawler: complications

» Web crawling isn’t feasible with one machine
All steps are distributed

» Malicious pages
Spam pages
Spider traps
Malicious server that generates an infinite sequence of linked pages
Sophisticated traps generate pages that are not easily identified as dynamic.

» Even non-malicious pages pose challenges
Latency/bandwidth to remote servers vary

Webmasters’ stipulations
How “deep” should you crawl a site’s URL hierarchy?
Site mirrors and duplicate pages

» Politeness — don’t hit a server too often
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Distributing the crawler

» Run multiple crawl threads, under different processes —
potentially at different nodes

Geographically distributed nodes

» Partition hosts being crawled into nodes

Hash used for partition

» How do these nodes communicate and share URLSs?
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Communication between nodes

» Output of the URL filter at each node is sent to the Dup
URL Eliminator of the appropriate node

DNS To
Doc robots other URL
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M Parse > " Host
Fetch Content URL splitter Dup
. URL
seen? filter R .
‘ | elim

flom
rom
other
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URL Frontier
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URL frontier: two main considerations

» Politeness: do not hit a web server too frequently

» Freshness: crawl some pages more often than others

E.g., pages (such as News sites) whose content changes
often

These goals may conflict each other.

(E.g., simple priority queue fails — many links out of a page go to
its own site, creating a burst of accesses to that site.)
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Politeness — challenges

» Even if we restrict only one thread to fetch from a host,
can hit it repeatedly

» Common heuristic:

Insert time gap between successive requests to a host that is
>> time for most recent fetch from that host
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URL frontier: Mercator scheme
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Mercator URL frontier

» URLs flow in from the top into the frontier

» Front queues manage prioritization

» Back queues enforce politeness

» Each queue is FIFO
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Mercator URL frontier: Front queues

v
Prioritizer

Selection from front queues is
initiated by back queues

Pick a front queue from which
to select next URL

Biased front queue selector

Back queue router
v
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Mercator URL frontier: Front queues

» Prioritizer assigns to URL an integer priority between |
and F

Appends URL to corresponding queue

» Heuristics for assigning priority
Refresh rate sampled from previous crawls

Application-specific (e.g., ‘crawl news sites more often”)
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Mercator URL frontier:
Biased front queue selector

» When a back queue requests a URL (in a sequence to be
described): picks a front queue from which to pull a URL

» This choice can be round robin biased to queues of higher
priority, or some more sophisticated variant

Can be randomized
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Mercator URL frontier: Back queues

Biased front queue selector

Back queue router Invariant |. Each back queue is

kept non-empty while the
B crawl is in progress.

Invariant 2. Each back queue

only contains URLs from a
single host.

Maintain a table from

D M hosts to back queues.
Back queue selector D

'

Host name Back queue
3

1
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Mercator URL frontier: Back queue heap

» One entry for each back queue

» The entry is the earliest time t, at which the host
corresponding to the back queue can be hit again
» This earliest time is determined from

Last access to that host
Any time buffer heuristic we choose

Biased front queue selector
Back queue router

>4 5
—
Back queue selector Heap
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Mercator URL frontier: Back queue

» A crawler thread seeking a URL to crawil:
Extracts the root of the heap
Fetches URL at the head of corresponding back queue g
if queue g = @ then
Repeat

(i) pull URLs v from front queues
(ii) add v to its corresponding back queue. ...

...until we get a v whose host does not have a back queue.

Add v to q and create heap entry for g (and also update the
table)
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Number of back queues B

» Keep all threads busy while respecting politeness

» Mercator recommendation: three times as many
back queues as crawler threads
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Resources

» lIR Chapter 20

» Mercator: A scalable, extensible web crawler (Heydon et al.

1999)



http://research.microsoft.com/~najork/mercator.pdf

