Crawling and web indexes

CE-324: Modern Information Retrieval
Sharif University of Technology

M. Soleymani
Fall 2016

Most slides have been adapted from: Profs. Manning, Nayak &
Raghavan (CS-276, Stanford)



Basic crawler operation

» Begin with known “seed” URLs

» Fetch and parse them
Extract URLs they point to

Place the extracted URLs on a queue

» Fetch each URL on the queue and repeat



Crawling picture

URLs crawled

and parsed
Unseen URLs

and contents
URLs frontier




What any crawler must do

» Be Polite: Respect implicit and explicit politeness
considerations
Only crawl allowed pages
Respect robots.txt (more on this shortly)

» Be Robust: Be immune to spider traps and other
malicious behavior from web servers




What any crawler should do

» Be capable of distributed operation: designed to run on
multiple distributed machines

» Be scalable: designed to increase the crawl rate by adding
more machines

» Performance/efficiency: permit full use of available
processing and network resources



What any crawler should do (Cont’d)
» Fetch pages of “higher quality” first

» Continuous operation: Continue fetching fresh copies of a
previously fetched page

» Extensible: Adapt to new data formats, protocols




Explicit and implicit politeness

» Explicit politeness: specifications from webmasters on
what portions of site can be crawled

robots.txt

» Implicit politeness: even with no specification, avoid hitting
any site too often




Robots.txt

» Protocol for giving spiders (“robots”) limited access
to a website, originally from 1994

» Website announces its request on what can(not) be
crawled
For a server, create a file /robots.txt

This file specifies access restrictions


http://www.robotstxt.org/wc/norobots.html

Robots.txt example

» No robot should visit any URL starting with
"lyoursite/temp/", except the robot called “searchengine”:

User—-agent: *
Disallow: /yoursite/temp/

User—agent: searchengiline

Disallow:



Robots.txt example: nih.gov

User-agent: PicoSearch/1.0

Disallow:
Disallow:

Disallow:
Disallow:

/news/information/knight/
/nidcd/

/news/research matters/secure/
/od/ocpl/wag/

User—-agent: *

Disallow:
Disallow:

Disallow:
Disallow:
Disallow:
Disallow:

/news/information/knight/
/nidcd/

/news/research_matters/secure/
/od/ocpl/wag/

/ddir/

/sdminutes/



Updated crawling picture

Unseen Web

URL frontier

Crawling thread

11




URL frontier

» The URL frontier is the data structure that holds and manages
URLs we'’ve seen, but that have not been crawled yet.

» Can include multiple pages from the same host
Must avoid trying to fetch them all at the same time

» Must keep all crawling threads busy

URL frontier:
found, but
not yet crawled

URLs crawled

and parsed




Processing steps in crawling

» Pick a URL from the frontier
» Fetch the doc at the URL <= Which one!

» Parse the URL
Extract links from it to other docs (URLs)

» Check if URL has content already seen

If not, add to indexes

» For each extracted URL
Ensure it passes certain URL filter tests
Check if it is already in the frontier (duplicate URL elimination)

13



Basic crawl architecture

\ 4

DNS

14

Fetch

Parse

Doc robots
FP’s filters

Content URL
seen!? filter

URL
set

Dup
URL
elim

URL Frontier




Basic crawl architecture

<> DNS

I

Fetch

15

Parse

Doc robots
FP’s filters

URL
set

Content URL
seen!? filter

Dup
URL
elim

URL Frontier




DNS (Domain Name Server)

» A lookup service on the internet
Given a URL, retrieve IP address of its host

Service provided by a distributed set of servers — thus, lookup
latencies can be high (even seconds)

» Common OS implementations of DNS lookup are
blocking: only one outstanding request at a time

» Solutions
DNS caching

Batch DNS resolver — collects requests and sends them out
together



Basic crawl architecture

\ 4

DNS

Fetch

Parse

Doc robots
FP’s filters

Content URL
seen!? filter

URL
set

Dup
URL
elim

URL Frontier




Parsing: URL normalization

» When a fetched document is parsed, some of the
extracted links are relative URLs

E.g., has a relative link to
Iwiki/Wikipedia:General_disclaimer which is the same as the
absolute URL

» During parsing, must normalize (expand) such relative
URLs

18


http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

Basic crawl architecture

\ 4

DNS

A 4

Fetch

—>

Doc robots
FP’s filters

Parse —

Content URL
seen!? filter

URL
set

Dup
URL
elim

URL Frontier




Basic crawl architecture

\ 4

DNS

A 4

Fetch

A 4

Parse

<>
Doc robots
FP’s filters
Content URL
seen! filter

URL
set

Dup
URL
elim

20

URL Frontier




Content seen?

» Duplication is widespread on the web

» If the page just fetched is already in the index, do not
further process it

» This is verified using document fingerprints or shingles



Basic crawl architecture

\ 4

DNS

A 4

Fetch

A 4

Parse

Doc
FP’s

robots
filters

l

Content
seen!

URL
filter

URL
set

Dup
URL
elim

22

URL Frontier




Filters and robots.txt

» Filters — regular expressions for URLs to be crawled or
not

E.g., only crawl .edu
Filter URLs that we can not access according to robots.txt

» Once a robots.txt file is fetched from a site, need not fetch
it repeatedly
Doing so burns bandwidth, hits web server

Cache robots.txt files

23



Basic crawl architecture

\ 4

DNS

A 4

Fetch

A 4

Parse

Doc robots
FP’s filters
Content URL
seen!? filter

24

URL Frontier

URL
set

Dup
URL
elim



Duplicate URL elimination

» For a non-continuous (one-shot) crawl, test to see if the
filtered URL has already been passed to the frontier

» For a continuous crawl — see details of frontier
implementation

25



Simple crawler: complications

» Web crawling isn’t feasible with one machine
All steps are distributed

» Malicious pages
Spam pages
Spider traps
Malicious server that generates an infinite sequence of linked pages
Sophisticated traps generate pages that are not easily identified as dynamic.

» Even non-malicious pages pose challenges
Latency/bandwidth to remote servers vary

Webmasters’ stipulations
How “deep” should you crawl a site’s URL hierarchy?
Site mirrors and duplicate pages

» Politeness — don’t hit a server too often

26



Distributing the crawler

» Run multiple crawl threads, under different processes —
potentially at different nodes

Geographically distributed nodes

» Partition hosts being crawled into nodes

Hash used for partition

» How do these nodes communicate and share URLSs?

27



Google data centers (wayfaring.com

v - .wm.;}m-u - i i) - AV A
Glasgow Danmark PO Ma Satellite Hybrid

;:?:"" United Denmark m!mrgrm 5 l' il Fokad ] ! ] W Detatis b
P ' K - Kar v-nll‘ an

B_e|;.§$1‘ mgdo’:_ S 'uz;\h Kaunas °Vl|ﬂ|u§

43 B Hamaca 5 S—

e otan 2 0 O " JRowock el OGdansk M/J" Minsh Myhomestay
Preston @ O .8' . Szczecin 5 5y =g
e Bremen 2 H8mburg ' Bydgoszcz oy falystor
Manchester, i < Rotrerbarn Cezrungen ) 5 ek e Benapyc Waypoints
Belarus

i g
s sLeceste Taterborough Y zwalle @EmMmen B
Bummghamb‘o 2 wawcn Amsterdam@’ » 3 & ,H:"noov: Zisiona @ _ Polska . Fil Berlin, Germany zoom
- . ch elafe G
CSwarseat s S WeslandQ,; Nederland S b T S a ”' Warszawa '~1 Frankfurt, Germany zoom
S . ..-wouom Lo A Ay sy Leipzig Keisz © -
! " » *oaz Lubin MR [Z] Munich, Germany zcom

20 R i P ) Legnica Whrock
L Dunkerqu Pl ) ° roctaw
Carofﬂ'- Bn§lol _ - Dunikerque igie Vmw:,° eutschland pe ° o s v Caesiochovs
Exeter@ Soosmauth GasQ8achton Late 2any Dresden” Olberac ARt

Zurich, Switzerland zoom
Groningen, Netherlands :com

Katowce
L

ol i ankfurt Rzetztw
Blymouth . L»’( [ Niesbaden® am Main Ceska Republika e Nesa
€ Havre - Luxembour - raih Rac il rakow =
S Regns R . £ B harchon ONumberQ Cageh Regue Ostrava Mons, Belgium zoom
i gt Wi MR O re D :“*‘c“"" Qege,.,m "'\—\Bmo £ Kegee o Eemshaven, Netherlands zcom
e 7 -
:voesl R Strasnourg? 7N p Slovensko__ © =~/ Tl Pavte: scom
ennes iy (-t Slovatcs vuuou\_
o L Freiturg ~QWsen — Satut “/.’
qu?,.‘, Q © Ortéans Brasgm B:x\dapesl e é U Mare ,_; na.r|
" Angers Tours Dn:m S o o ,,—-4 -—\Ostermch S g Gaie Mare 5 'm‘ \g\okﬂo Notes
Nantes @ < e : Allsris I[
° 97‘“""" nnnmm "Suisse -nmr.-v.:_l- QGraz Magyarorszag PIRSSSSEN S« a
Chaojel ' Pomers - Oracea Google datacenter z00r
i o France LNMW‘: svu:’" frento \w@ta Hungery, ) hd \.ﬁ n e 25 z00m
0 / S Trient) P . 2
o RA,«‘“‘O Niort  Limoges Lyon "-egw Sweleele :;’h o Sloven y ° er‘d )
La|Rao ‘ ) ) o e N oy Venaze Bl overs OZogfeb—W-'-\ Timscars®
Sant-Lenie® | T Milano®. P-4 g el S TR0, 3 ey ey Edit Map

28



Communication between nodes

» Output of the URL filter at each node is sent to the Dup
URL Eliminator of the appropriate node

DNS To
Doc robots other URL
FP’s filters nodes set

AT 7

M Parse > " Host
Fetch Content URL splitter Dup
. URL
seen? filter R .
‘ | elim

flom
rom
other

nodes

URL Frontier

29



URL frontier: two main considerations

» Politeness: do not hit a web server too frequently

» Freshness: crawl some pages more often than others

E.g., pages (such as News sites) whose content changes
often

These goals may conflict each other.

(E.g., simple priority queue fails — many links out of a page go to
its own site, creating a burst of accesses to that site.)

30



Politeness — challenges

» Even if we restrict only one thread to fetch from a host,
can hit it repeatedly

» Common heuristic:

Insert time gap between successive requests to a host that is
>> time for most recent fetch from that host

31



URL frontier: Mercator scheme

32

UII\LS

Prioritizer

IFERRR RN
K front queues

L

Biased front queue selector
Back queue router

B back queues

Single host on each

Back queue selector

l
Crawl thread requesting URL




Mercator URL frontier

» URLs flow in from the top into the frontier

» Front queues manage prioritization

» Back queues enforce politeness

» Each queue is FIFO

33

e

/
\

(LT =

!

prioritizer

~ F front queues

/

f. queue selector & b. queue router

™

(T g

/\

B back queues:
single host on each

\//

D]]]]]]

‘ b. queue selector

———

-

\

'




Mercator URL frontier: Front queues

v
Prioritizer

Selection from front queues is
initiated by back queues

Pick a front queue from which
to select next URL

Biased front queue selector

Back queue router
v

34



Mercator URL frontier: Front queues

» Prioritizer assigns to URL an integer priority between |
and F

Appends URL to corresponding queue

» Heuristics for assigning priority
Refresh rate sampled from previous crawls

Application-specific (e.g., ‘crawl news sites more often”)

35



Mercator URL frontier:
Biased front queue selector

» When a back queue requests a URL (in a sequence to be
described): picks a front queue from which to pull a URL

» This choice can be round robin biased to queues of higher
priority, or some more sophisticated variant

Can be randomized

36



Mercator URL frontier: Back queues

Biased front queue selector

Back queue router Invariant |. Each back queue is

kept non-empty while the
B crawl is in progress.

Invariant 2. Each back queue

only contains URLs from a
single host.

Maintain a table from

D M hosts to back queues.
Back queue selector D

'

Host name Back queue
3

1

37 20




Mercator URL frontier: Back queue heap

» One entry for each back queue

» The entry is the earliest time t, at which the host
corresponding to the back queue can be hit again
» This earliest time is determined from

Last access to that host
Any time buffer heuristic we choose

Biased front queue selector
Back queue router

>4 5
—
Back queue selector Heap

v



Mercator URL frontier: Back queue

» A crawler thread seeking a URL to crawil:
Extracts the root of the heap
Fetches URL at the head of corresponding back queue g
if queue g = @ then
Repeat

(i) pull URLs v from front queues
(ii) add v to its corresponding back queue. ...

...until we get a v whose host does not have a back queue.

Add v to q and create heap entry for g (and also update the
table)

39



Number of back queues B

» Keep all threads busy while respecting politeness

» Mercator recommendation: three times as many
back queues as crawler threads

40



Resources

» lIR Chapter 20

» Mercator: A scalable, extensible web crawler (Heydon et al.

1999)



http://research.microsoft.com/~najork/mercator.pdf

